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Let S=[z # C: |Im(z)|<;] be a strip in the complex plane. H� q, 1�q<�,
denotes the space of functions, which are analytic and 2?-periodic in S, real-valued
on the real axis, and possess q-integrable boundary values. Let + be a positive
measure on [0, 2?] and L� p(+) be the corresponding Lebesgue space of periodic
real-valued functions on the real axis. The even dimensional Kolmogorov, Gel'fand,
and linear widths of the unit ball of H� q in L� p(+) are determined exactly, when
1�p�q<� or when 2=q<p<� and ; is sufficiently large. It is shown that all
three n-widths coincide and a characterization of the widths in terms of Blaschke
products is established. � 1996 Academic Press, Inc.

1. Introduction

Let S=[z # C: |Im(z)|<;] be a strip in the complex plane and let H� q,
1�q<�, denote the space of functions f , which are analytic and
2?-periodic in S, real on the real axis, and satisfy sup&;<'<;(1�4?)
�2?

0 | f (t+i')| q dt<�. A function f in H� q has a non-tangential limit almost
everywhere on �S. The boundary function belongs to Lq and the norm

& f &H� q :=\ 1
4? |

2?

0
| f (t+i;)|q+| f (t&i;)|q dt+

1�q

induces a Banach space structure on H� q. Further details on H� q can be
found in [Sar].

The present paper deals with optimal approximation of functions in H� q,
where the term optimal approximation will be interpreted in the sense of
n-widths. Hereby the following three classes of n-widths will be considered:
Kolmogorov n-widths, Gel'fand n-widths and linear n-widths. We find the
precise value of the even dimensional n-widths of the unit ball A� q of H� q in
the target space L� p , when 1�p�q<� or when 2=q<p<� and ; is

article no. 0017

236
0021-9045�96 �12.00
Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



F
ile

:6
40

J
29

19
02

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

9
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

27
05

Si
gn

s:
20

00
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

sufficiently large. Here L� p denotes the Lebesgue space L� p([0, 2?], +) of
periodic real valued functions defined on the real axis and + is a positive
measure on [0, 2?]. It turns out that all three kinds of n-widths coincide.
Moreover sampling is optimal for A� q, i.e. there exists an optimal linear
approximation operator based on point evaluations.

Similar investigations were already carried out by [FS1] and [FS2].
These authors determined the n-widths of the unit ball of the Hardy space
Hq(2) in Lp(E, +). Here 2 is the unit disk in the complex plane; E is a
compact subset of 2 and + a positive measure on E. The content of the pre-
sent paper consists in studying how the approach of Fisher and Stessin can
be extended and adapted from the nonperiodic to the periodic case. On the
other side the present results extend results of [Wil1], [Wil2] and [Osi],
where the even dimensional widths of A� � in L� p for 1�p�� were deter-
mined. Finally one must definitely mention the fundamental pioneering
paper of Fisher and Micchelli [FM], which elucidated the situation in
the nonperiodic case for q=� and 1�p�� and served as stimulation for
the other work mentioned above. It were Fisher and Micchelli, who for the
first time pointed out the strong connection between Blaschke products
and n-widths of Hardy spaces. Blaschke products will also be of central
importance for the analysis of the present paper.

In Section 2 we fix our notation and formulate the main result, while
Section 3 contains the corresponding proof.

2. The Main Result

The Kolmogorov n-widths of a subset A of a Banach space X are defined
by

dn(A, X)=inf
Xn

sup
x # A

inf
y # Xn

&x& y&,

where Xn runs over all subspaces of X of dimension n or less.
The Gel'fand n-widths of A in X are defined by

d n(A, X)=inf
Ln

sup
x # Ln & A

&x&,

where Ln runs over all subspaces of codimension at most n.
The linear n-widths of A in X are given by

$n(A, X)=inf
Pn

sup
x # A

&x&Pnx&,

where Pn is any linear operator of rank at most n mapping X into itself.

237PERIODIC ANALYTIC FUNCTIONS
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In the present paper we are interested in the even dimensional n-widths
of A� q in L� p . We say that sampling is optimal, if there exists an optimal
linear approximation operator P2n based on point evaluation in fixed
points z1 , ..., z2n in [0, 2?) combined with fixed functions c1 , ..., c2n # L� p :

(P2n f )(z)= :
2n

k=1

f (zk) ck(z), f # H� q

$2n(A� q, L� p)= sup
f # A� q

& f &P2n f &L� p .

Our approach to the periodic function spaces H� q will consist in transfering
the analysis from the strip S to the annulus 0=[w # C: R<|w|<1�R],
where R=e&;. The universal covering transformation w=eiz maps S onto
0 and the operator

I: f (z) � g(w)=f \1
i

ln(w)+
yields an isometry between H� q and Hq(0), the space of all functions g,
which are analytic in 0, real valued on the unit circle E=[w # C: |w|=1],
and satisfy

&g&Hq :=\ 1
4? |

2?

0
| g(Rei%)|q+ } g \ 1

R
ei%+ }

q

d%+
1�q

<�.

Since g is real valued on E, the reflection principle implies that
g(1�w� )=g(w). Therefore the Hq norm of g may be expressed as follows:

&g&Hq=\ 1
2? |

2?

0
| g(Rei%)|q d%+

1�q

.

Furthermore I maps the space L� p isometrically onto the corresponding
space Lp , defined on the unit circle E. Denoting by Aq the unit ball in
Hq(0), we see that the n-widths of A� q in L� p are equal to the n-widths of
Aq in Lp . In the sequel we will concentrate exclusively on the later setting.

For the determination of the n-widths of Aq in Lp we need the notion of
Blaschke products. A Blaschke product B of degree m on 0 is a function
of the form

B(w)=exp \& :
m

j=1

(g(w, :j)+ih(w, :j))+ .

238 KLAUS WILDEROTTER
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Here :1 , ..., :m are points in 0, g(w, :j) is the Green's function for 0 with
singularity at :j and h(w, :j) is the harmonic conjugate of g(w, :j). In
general B is multiple valued. However, if we choose m=2n and locate all
points :1 , ..., :2n on the unit circle E, it turns out that B is single valued.
For a proof of the last fact and further information on Blaschke products
in multiply connected domains we refer to [Fis].

Finally we denote by B2n the set of all Blaschke products of degree 2n,
all whose zeros lie on E. In view of the symmetry of 0 with respect to E,
all functions in B2n are real valued on E.

We are now prepared to formulate our main result.

Theorem 1. Suppose that 1�p�q<� or that q=2 and p satisfies

1
p

>
2
?

:
�

m=0

(&1)m

2m+1
1

cosh(2m+1) ;
.

Then

d2n(Aq, Lp)=d 2n(Aq, Lp)=$2n(Aq, Lp)= inf
B # B2n

sup
g # Aq

&gB&Lp .

Moreover, sampling is optimal for $2n(Aq, Lp).

3. Proofs

As mentioned in the introduction our course of proof is similar to Fisher
and Stessin. Although we emphasize here of course on the specific new
features of the periodic case, some repetitions of arguments from Fisher
and Stessin are inevitable in order to make the present paper self con-
tained.

The starting point of our analysis is the following integral representation
formula for real valued functions u, which are harmonic in 0, continuous
in 0� and symmetric with respect to the unit circle, i.e. u(z)=u(1�z� ). Let
p=ei{ be a fixed point on the unit circle. Then we have (see [Ach], p. 217):

u( p)=
1

2? |
2?

0
u(Rei%) KR(ei%, p) d%, (1)

where

KR(ei%, p)=KR(ei%, ei{)=
24
?

dn \4
?

(%&{), *+

239PERIODIC ANALYTIC FUNCTIONS
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and

?4$
4

=;.

Here dn(z, *) denotes the Jacobi elliptic function with modulus * (see for
example [Bat]). The complementary modulus is given by *$=- 1&*2 and
the complete elliptic integrals of the first kind with moduli * and *$ are
denoted by 4 and 4$, respectively.

The kernel KR(ei%, p) is always positive. The representation formula (1)
will be of great importance in the sequel, inasmuch as it is the adequate
generalization of the Poisson integral formula to the doubly connected
annulus.

A further main ingredient for the proof of Theorem 1 is the following
extremal problem: for 1�p , q<�, and a measure + on E define

$( p, q, +) :=sup[&g&Lp�&g&Hq : g # H q]. (2)

A compactness argument shows the existence of solutions of (2). Moreover
we claim that any solution g is free of zeros. Suppose on the contrary that
g(z*)=0 for z* # 0. Then by symmetry g(1�z*)=0 as well. Division by the
single valued Blaschke product of degree 2 with zeros in z* and 1�z* leaves
the Hq norm invariant, while strictly increasing the Lp norm. This con-
tradiction shows that g must be zero free. We shall call a solution of (2)
normalized if it has Hq norm one and is positive at the point z=1. We
claim that a normalized solution is uniquely determined, if the assumptions
of Theorem 1 are satisfied. The proof of this assertion proceeds in two
steps.

Lemma 1. Let g be a normalized solution of (2). Then

$p | g(Rei%)|q=|
E

| g(w)| p KR(ei%, w) d+(w)

for all % # [0, 2?], where $ is an abbreviation for $( p, q, +).

Proof. Let u be a real harmonic function on 0, which is continuous on
0� and symmetric with respect to E. Let v denote the locally well defined
harmonic conjugate function of u. The Cauchy�Riemann equations imply
that for points w on E we have (�v��s)(w)=(�u��n)(w)=0. The normal
derivative (�u��n) vanishes on E because of the symmetry of u. Conse-
quently the period of v along E is zero and the holomorphic function u+iv

240 KLAUS WILDEROTTER
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is globally well defined on 0� . Set f==exp(=(u+iv)), where = is a small
positive or negative parameter. Since $�&gf=&Lp �&gf=&Hq , we obtain that

$ { 1
2? |

2?

0
| g(Rei%)|q e=qu(Rei%) d%=

1�q

�{|E
| g(w)| p e=pu(w) d+(w)=

1�p

.

Expanding the exponential terms and using the binomial theorem together
with the fact that the solution g is normalized we conclude that

$p 1
2? |

2?

0
| g(Rei%)|q u(Rei%) d%=|

E
| g(w)| p u(w) d+(w).

Expressing u(w) by formula (1) yields

|
E

| g(w)| p u(w) d+(w)

=|
E

| g(w)| p 1
2? |

2?

0
u(Rei%) KR(ei%, w) d% d+(w)

=
1

2? |
2?

0
u(Rei%) |

E
| g(w)| p KR(ei%, w) d+(w) d%.

Application of the du Bois�Reymond lemma completes the proof of
Lemma 1. K

Lemma 2. Suppose that 1�p�q<� or that 1�q<p<� and

q
p

>
4
?

:
�

m=0

(&1)m

2m+1
1

cosh(2m+1) ;
. (3)

Then a normalized solution of (2) is uniquely determined.

Proof. Let g1 and g2 be two normalized solutions of (2). Lemma 1
implies that

| g1(Rei%)�g2(Rei%)|q=|
E

| g1(w)�g2(w)| p | g2(w)| p KR(ei%, w) d+(w)

<|E
| g2(w)| p KR(ei%, w) d+(w).

Since d#(w)=| g2(w)| p KR(ei%, w) d+(w)��E | g2(w)| p KR(ei%, w) d+(w) is a
probability measure, we conclude that for each % # [0, 2?]

| g1(Rei%)�g2(Rei%)|q�sup
w # E

| g1(w)�g2(w)| p.

241PERIODIC ANALYTIC FUNCTIONS
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Setting u=ln | g1 �g2 | we may rephrase the last inequality in the form

sup
% # [0, 2?]

u(Rei%)�
p
q

sup
w # E

u(w).

Both extremal functions g1 and g2 have no zeros in 0. Consequently u is
a harmonic function. Assuming that 1�p�q<�, we have p�q�1 and the
maximum principle implies that u is constant. Hence g1 is a constant multi-
ple of g2 and the constant must be 1, since g1 and g2 are both normalized.
This proves the first part of Lemma 2.

The case q<p is somewhat more involved. Interchanging the role of g1

and g2 in the above analysis we obtain

& inf
% # [0, 2?]

u(Rei%)�&
p
q

inf
w # E

u(w).

Combining this inequality with the corresponding inequality for the
supremum yields

sup
% # [0, 2?]

u(Rei%)& inf
% # [0, 2?]

u(Rei%)�
p
q

(sup
w # E

u(w)& inf
w # E

u(w)).

Let us assume that u is not identically constant. Then after appropriately
scaling u we may suppose that &1�u�1 and that the left-hand side of the
last inequality equals 2. The right-hand side may be written in the form

p
q

sup
{, . # [0, 2?]

(u(ei{)&u(ei.)).

Using the representation formula (1) we obtain:

2�
p
q

sup
{, . # [0, 2?] {

1
2? |

2?

0
|KR(ei%, ei{)&KR(ei%, ei.)| d%= .

Let us denote the last supremum by M. We will show that

M=
8
?

:
�

m=0

(&1)m

2m+1
1

cosh(2m+1) ;
. (4)

Since assumption (3) means that M<2q�p, we arrive at a contradiction.
Consequently u must be identically constant, which in turn implies the
desired uniqueness in Lemma 2.

242 KLAUS WILDEROTTER
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What remains to be done, is to establish identity (4). In view of the
particular properties of the elliptic function dn we conclude that

M= sup
{, . # [0, 2?] {

1
2? |

2?

0
|KR(ei%, ei{)&KR(ei%, ei.)| d%=

=
1

2? |
2?

0
|KR(ei%, 1)&KR(ei%, &1)| d%

=
4
?2 |

2?

0 }dn \4
?

%, *+&dn \4
?

(%+?), *+ } d%

=
44
?2 |

?�2

0
dn \4

?
%, *+&dn \4

?
(%+?), *+ d%.

Using the relation

dn \4
?

%, *+=
?

24
+

?
4

:
�

m=1

cos m%
cosh m;

we obtain

44
?2 |

?�2

0
dn \4

?
%, *+ d%=1+

4
?

:
�

m=0

(&1)m

2m+1
1

cosh(2m+1) ;
.

Hence

M=
8
?

:
�

m=0

(&1)m

2m+1
1

cosh(2m+1) ;
. K

Our next aim will be to establish the lower bound for d2n(Aq, Lp)
and d 2n(Aq, Lp). For this purpose we need in addition to Lemma 2 the
following version of the Pick�Nevanlinna interpolation theorem for the
space H �(0, C), consisting of all complex valued bounded holomorphic
functions on 0. Functions in H �(0, C) are not necessarily real valued on
the unit circle E.

Theorem 2. Fix 2n+1 distinct points z0 , ..., z2n in E and let t0 , ..., t2n be
2n+1 real numbers with �2n

j=0 |tj |
2=1, so that the vector t=(t0 , ..., t2n)

belongs to the unit sphere S2n of R2n+1. Set

\(t)=inf[& f &H � : f # H �(0, C), f (zj)=tj , 0� j�2n].

243PERIODIC ANALYTIC FUNCTIONS
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Then we have:

(i) \ is a continuous function on S2n.

(ii) There is a unique function B t # H �(0, C) with

&Bt &=1 and Bt(zj)=tj �\(t), 0� j�2n.

(iii) The function B t is a single valued Blaschke product of degree at
most 2n+1.

(iv) _: t � Bt is a continuous mapping from S 2n into the set B2n+1 of
single valued Blaschke products of degree at most 2n+1, when B2n+1 is
endowed with the topology of locally uniform convergence on 0.

For a detailed exposition of the Pick�Nevanlinna theorem we refer to
[Fis], Chapter 5.

A priori it is possible that the Blaschke product Bt # B2n+1 interpolating
the data tj �\(t) with minimal H � norm is complex valued on E. However,
since the data t are real, the Schwarz reflection principle implies that
Bt(1�z� ) is a minimal interpolant as well. In view of uniqueness we conclude
that Bt is real valued on E and its zeros are located symmetric with respect
to E. Let z1 , ..., zk be the zeros of B t , counting multiplicities. Then the
period of arg(Bt) along E is given by 2? �k

j=1 |(zj), where | is the unique
harmonic function with constant boundary values 1 and 0 on the inner and
outer boundary of 0, respectively. Hence B t is single valued if and only if
�k

j=1 |(zj) # N. Since |(`)+|(1� �̀ )=1 for all ` # 0 and in particular
|(`)= 1

2 for ` # E, the condition �k
j=1 |(zj) # N implies that the degree k of

Bt must be even.
Let us denote by B� 2n the set of all Blaschke products with an even

number of zeros less or equal 2n, which are located on E or symmetric
with respect to E. As a result of the preceding analysis we obtain an odd
continuous mapping

_: S 2n � B� 2n , t [ B t .

We now use the map _, in order to construct an odd continuous
mapping { from S 2n into Aq: For each Blaschke product B # B� 2n , let gB be
the unique normalized solution of (2) with respect to the measure |B| p d+
and define

{(x)=_(x) g_(x) , x # S 2n .

Having established the existence of {, we use now the same technique
based on Borsuk's theorem like [FS1] to conclude that

inf
B # B� 2n

sup
g # Aq

&gB&Lp�d2n(Aq, Lp), d 2n(Aq, Lp).

244 KLAUS WILDEROTTER
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What remains to be done is to show that

inf
B # B� 2n

sup
g # Aq

&gB&Lp = inf
B # B2n

sup
g # Aq

&gB&Lp .

The last equality is implied by the following two observations:

(i) Let B # B� 2n be a Blaschke product with less than 2n zeros: Then
multiplying B with a symmetric Blaschke product of degree 2 yields a
function in B� 2n and reduces the norm &gB&Lp .

(ii) Let B # B� 2n possess a symmetric pair of zeros z1 and z2=1�z� 1 ,
which does not ly on E. Let z0 be the orthogonal projection of z1 onto E.
Replacing z1 and z2 by a double zero in z0 yields a Blaschke product
B0 # B2n such that &gB0&Lp�&gB&Lp .

Altogether this completes the proof of the lower bound for d2n(Aq, Lp) and
d 2n(Aq, Lp).

We now turn to the upper bound. Since the Kolmogorov and Gel'fand
widths are always less or equal than the linear widths (see [Pin]), we may
confine ourselve to proving that

$2n(Aq, Lp)� inf
B # B2n

sup
f # Aq

& fB&Lp .

First we consider the case p�q. Let B be a Blaschke product in B2n with
zeros z1 , ..., z2n and let gB be the unique normalized solution of (2) for the
measure |B| p d+. Define T: Hq � Lp by

Tf (z)=B(z) gB(z)
1

2? |
2?

0

f (Rei%)
B(Rei%) gB(Rei%)

KR(z, ei%) d%

where the kernel KR(z, ei%) is given by (1). Then Th=h for functions h
vanishing at the zeros of B. In general, let 81 , ..., 82n be 2n bounded peri-
odic analytic functions on 0, which satisfy 8i (zj)=$ij . Observing that the
difference f &�2n

j=1 f (zj) 8j has zeros in z1 , ..., z2n , we obtain that

Tf = f & :
2n

j=1

f (zj)(8j&T8j).

Hence T has the form T=I&P, where P is a linear sampling operator of
rank less or equal 2n. Consequently $2n(Aq, Lp) is bounded from above by
&T&. In order to estimate &T&, we may proceed similarly like [FS2].
However, since we are dealing with the annulus instead of the unit disk, we
must replace the Poisson kernel by the kernel KR(ei%, z) defined in (1). In
this way we obtain:

$2n(Aq, Lp)� sup
g # Aq

&gB&Lp .
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Because B is an arbitrary Blaschke product in B2n , this yields the desired upper
estimate of $2n(Aq, Lp) for 1�p�q<�.

What remains to be done, is to establish the case 2=q<p<�. Since H 2

is a Hilbert space, it is known that $2n(A2, Lp)=d 2n(A2, Lp) (see [Pin]).
Considering the 2n-codimensional subspace [ f # H2: f (z1)= } } } = f (z2n)=0]
we see that d 2n(A2, Lp)�supg # A2 &gB&Lp . Taking the infimum over all B in
B2n completes the proof of the upper bound of Theorem 1.
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